Макет модель аппликация шитьё пособие по биологии клетка фетр

Инфузория-туфелька своими руками

Мастер-класс для учащихся 7 класса.


Этапы мастер-класса

1. Подготовительно-организационный этап:

Цель: закрепить изученный материал по теме «Тип инфузории, или ресничные».

Задачи:

— развить умения учащихся работать с иллюстрациями, наглядными пособиями,

— стимулировать познавательный интерес к предмету биологии,

— воспитывать ответственное отношение к выполнению полученного задания.

Материалы и оборудование: белый картон, ножницы, нитки, игла швейная, цветные  карандаши (или фломастеры), простой карандаш, ластик, женская обувь на сплошной подошве.

Содержание этапа:

Ребята, сегодня мы с Вами познакомились с Типом инфузории, или ресничные. Я предлагаю Вам стать настоящими творцами-биологами и самостоятельно изготовить свою инфузорию-туфельку. Это будет Вашим творческим домашним заданием. Макет может быть выполнен в любой технике, тут есть, где разгуляться фантазии. Я же, в свою очередь, хочу продемонстрировать вам мастер-класс по изготовлению макета инфузории-туфельки. Кто-то, возможно, возьмёт его на заметку.

2. Основной этап:

1. Для изготовления макета инфузории-туфельки Вам понадобятся следующие материалы: белый картон, ножницы, нитки, игла швейная, цветные карандаши (или фломастеры), простой карандаш, ластик, женская обувь на сплошной подошве.

2. Берем лист белого картона и на нем располагаем женскую обувь, которая выполняет роль лекало, затем обводим простым карандашом по контуру.

3. С помощью ластика стираем носовую часть нашей заготовки и дорисовываем ее более острой и вытянутой, как у настоящей инфузории-туфельки.

4. Теперь вырезаем ножницами нашу картонную заготовку.

5. Вот так выглядит наша будущая инфузория-туфелька.

6. Давайте еще раз откроем наш учебник и вспомним, как же выглядит наш объект изучения, какого его внутреннее строение.

7. Теперь можно смело разрисовывать наш макет, постарайтесь, как можно точнее отразить в своем рисунке внутреннее строение инфузории-туфельки.

8.  С помощью  швейной иглы прокалываем край нашей инфузории-туфельки, нитку  оставляем с двух сторон макета примерно по 3-4 см, и завязываем на узелок.

9. Лишнюю нить отрезаем, делаем следующую ресничку.

Таким образом, по всему контуру наша инфузория-туфелька обрастает настоящими ресничками.

10. Наш макет инфузории-туфельки готов. Теперь это отличный наглядный материал, который займет достойное место среди прочих в кабинете биологии.

Заключительное слово.

Сегодня Вы познакомились с одним из способов изготовления макета инфузории-туфельки. А какой будет ваша инфузория-туфелька!? Я предлагаю на следующем уроке устроить выставку ваших макетов. Удачи!

Текст этой презентации

Слайд 1

Презентация к уроку биологии в 5 классе (базовый уровень) ФГОС по теме «Строение клетки» Учебник серии «Алгоритм успеха» авторы И.Н.Пономарёва, И.В.Николаев, О.А.Корнилова. – М.:Вентана-Граф, 2013 Автор материала: Медведева Татьяна Александровна, учитель биологии высшей квалификационной категории МБОУ Арбатская средняя школа Таштыпского района Республики Хакасия Арбаты – 2016г.

Слайд 2

Слайд 3

Разнообразие клеток Организмы Одноклеточные Многоклеточные Клетка и её части Ядро Цитоплазма Клеточная мембрана Клеточная стенка Б-5кл. Стр. 19 — 21Строение клетки01.11.2016

Слайд 4

Разнообразие клеток

Слайд 5

Хрящевые, костные и мышечные клетки человека

Слайд 6

Нервные клетки человека


Слайд 7

Разнообразие клетокРастительные клетки: листа, стебля, корняКлетки крови

Слайд 8

Половые клетки человека и оплодотворение

Слайд 9

Одноклеточные и многоклеточные организмыОдноклеточный организмМногоклеточные организмыИнфузория – туфелькаЧервь планарияЛандыш Гималайский гриф

Слайд 10

Строение растительной и животной клеткиВакуольХлоропласт Цитоплазма Ядро Клеточная мембранаКлеточная стенкаКлетка растенийКлетка животных

Слайд 11

Словарь терминовКлеточная мембрана — наружная оболочка клетки Цитоплазма – вязкое полужидкое содержимое клетки, которое постоянно движется и связывает все её частиЯдро – важнейшая часть клетки, небольшое плотное округлое тельце, расположенное в центральной части клеткиКлеточная стенка — наружная оболочка клеток растений с. 20 — 21

Слайд 12

Назовите главные части живой клеткиКлеточная мембранацитоплазмаЯДРО

Слайд 13

Слайд 14

Синквейн1. Название синквейна 2. 2 прилагательных 3. 3 глагола 4. Фраза на тему синквейна 5. Существительное Придумайте синквейн на тему «Клетка»Клетка Маленькая, невидимаяРастёт, дышит, питаетсяМельчайшая структура организма«Кирпичик»

Слайд 15

Синквейн1. Название синквейна 2. 2 прилагательных 3. 3 глагола 4. Фраза на тему синквейна 5. Существительное Придумайте синквейн на тему «Клетка»Клетка Маленькая, невидимаяРастёт, дышит, питаетсяМельчайшая структура организма«Кирпичик»

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Клетка живая искусственная

Когда биологи открывали клетку в XVII веке, они не задумывались о том, что это такое и как ее отличить от неживой материи

Тогда было важно постулировать, что клетка может образовываться только от клетки, в противовес разным спекуляциям о самопроизвольном возникновении жизни из грязи. И клеткой называли мельчайшую видимую составляющую любого организма

Сейчас же ситуация строго обратная: ни у кого не вызывает вопросов, из чего состоят живые существа. Вместо этого мы пытаемся применить прием, запрещенный еще три с лишним столетия назад, и собрать клетку из грязи, а точнее из подручных веществ.

Строение растительных клеток

Схема строения клетки растений

Далее приведен список и краткая характеристика основных органелл клеток растений. Для более детальной информации переходите по ссылкам ниже:

Клеточная стенка. Как и их прокариотические предки, растительные клетки имеют жесткую оболочку, окружающую плазматическую мембрану. Однако это гораздо более сложная структура, которая выполняет множеству функций — от защиты клетки до регулирования жизненного цикла растительного организма.

Хлоропласты

Самой важной характеристикой растений является их способность фотосинтезировать, по сути, производить свою собственную пищу, превращая световую энергию в химическую энергию. Этот процесс осуществляется в специализированных органеллах, называемых хлоропластами.

Эндоплазматический ретикулу — сеть мешочков, которая производит, обрабатывает и переносит химические соединения для использования внутри и вне клетки

Он связан с двухслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и цитоплазмой. В растениях эндоплазматический ретикулум также соединяется между клетками через плазмодесмату.

Аппарат Гольджи — это отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, и готовит их для экспорта. Микрофиламенты — твердые стержни из глобулярных белков, называемые актином. Они выполняют структурную поддержку и являются основным компонентом цитоскелета. Микротрубочки — прямые, полые цилиндры, обнаруженные в цитоплазме всех эукариотических клеток (у прокариот они отсутствуют) и выполняют различные функции, от транспортировки до поддержки структуры.

Митохондрии — вытянутые органеллы, которые также присутствуют в цитоплазме всех эукариотических клеток. В растительных клетках они перерабатывают молекулы углеводов и сахара, чтобы обеспечить клетку энергией, особенно когда свет не доступен для хлоропластов.

Ядро — важная органелла, которая служит в качестве информационно-административного центра клетки и выполняет две основные функции: 1) хранит наследственный материал клетки или ДНК и координирует деятельность клетки (рост, посредственный метаболизм, синтез белка и деление клеток).

Пероксисомы — окруженные одной мембраной округлые органеллы, встречающиеся в цитоплазме клеток. Плазмодесмы — небольшие трубки, соединяющие растительные клетки друг с другом, обеспечивая живые мостики между ними.

Плазматическая мембрана. Все живые клетки имеют мембрану, которая окружает их содержимое. В прокариотах и ​​растениях мембрана представляет собой внутренний слой защиты, окруженный жесткой клеточной стенкой. Эти мембраны также регулируют прохождение молекул внутрь или из клеток.

Рибосомы. Все клетки живых организмов имеют рибосомы, состоящие из приблизительно 60% РНК и 40% белка. У эукариот рибосомы включают четыре нити РНК, а у прокариот — три нити РНК.

Вакуоль. Каждая растительная клетка имеет большую одиночную вакуоль, которая хранит соединения, помогает в росте и играет важную структурную роль для растений.

Насекомые

Летом можно увидеть множество разнообразных насекомых, их внешний вид – творение природы, они уникальны и очень красивы. Узнайте как сделать оригинальные поделки из пластилина очень просто и быстро. Ребенку такое занятие точно понравится.

Стрекоза

Всего из несколько видов пластилина с детьми можно слепить красивейшее насекомое, которое радует глаз. Процесс лепки очень простой, представленное ниже руководство с фото, существенно упростит создание поделки своими руками. Итак, приступим?

Изготовление поделки:

  1. Перед тем как лепить из пластилина стрекозу, возьмите несколько разных оттенков пластилина.

  2. Сформируйте из двух цветов небольшой шарик, он послужит головой стрекозы. Затем вылепите таким же образом туловище, после этого можно сделать насечки, как на фотографии.

  3. Теперь лепите из пластилина поэтапно крылья (два маленьких и два больших), используя более светлые оттенки (желтый и оранжевый). Особый рельеф удастся создать благодаря нескольким продольным линиям на каждом крыле.

  4. Прикрепите к туловищу сформированные крылышки, присоедините голову. После этого вылепите глаза, прикрепите к голове. Пластилиновые фигурки выглядят очень реалистично.

Бабочка


Яркая грациозная бабочка завораживает своим внешним видом. Возможно ли такое чудо слепить самостоятельно? Конечно же, да, если строго следовать инструкции. Каждый кусочек пластилина оживет в ваших руках, превратится в нечто особенное.

Техника изготовления:

  1. Сделайте заготовки для головы и туловища, как показано на фото.

  2. Соедините все эти детали, сделайте насечки стекой, таким образом имитируя хвост.

  3. Теперь потребуется сделать глазки и усики и прикрепить их на голове насекомого.

  4. Вылепите из голубой основы крылышки (2 пары) по типу лепестков цветка, при помощи стеки создайте рельеф крыльев.

  5. Соедините все детали поделки, на крылышки прикрепите кружочки из пластилина различного размера, чтобы сымитировать рисунок.

  6. Чудесная бабочка готова, она выглядит как настоящая.

Божья коровка

Для всех деток жучок «Солнышко» является особенным насекомым, ведь его появление свидетельствует о скором наступлении лета. Любоваться Божьей коровкой можно не только на природе, но и у себя дома, создав красивейшую поделку.

Особенности лепки:

  1. Перед тем как лепить из пластилина, выберите необходимые цвета – красный и черный.

  2. Из основы красного цвета сформируйте шарик, из черного – лепешку. После этого соедините две детали, как показано на фото.

  3. Затем необходимо перевернуть полученную заготовку, нанести насечки, используя стеку.

  4. Прикрепить ножки, придайте им нужную форму, а потом приступите к формированию головы, глаз и усиков жука.

Строение клетки растения

В природе существуют как одноклеточные растения, так и многоклеточные. Например, в подводном мире можно встретить одноклеточные водоросли, которые имеют все функции присущие живому организму.

Многоклеточная особь – это не просто набор клеток, а единый организм, способный образовывать различные ткани, органы, которые взаимодействуют друг с другом.

Строение растительной клетки у всех растений одинаковое и состоит из одних и тех же компонентов. Её состав следующий:

  • оболочка (пластинка, межклетник, плазмодесмы и плазмолеммы, тонопласт);
  • вакуоли;
  • цитоплазма (митохондрии; хлоропласты и другие органоиды);
  • ядро (ядерная оболочка, ядрышко, хроматин).

Рис. 1. Строение клетки растения.

В отличие от животной, растительная клетка имеет особую целлюлозную оболочку, вакуоль и пластиды.

Изучение строения и функций растительной клетки показало, что:

  • самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От других органоидов отделяет ядро ядерная оболочка;
  • бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
  • под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
  • клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и придача формы;
  • маленькими составными компонентами являются пластиды.

    Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;

  • внутренняя полость, заполненная соком, называется вакуолью. Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;

Рис. 2. Изменения размера вакуоли при росте растения.

  • митохондрии способны передвигаться вместе с цитоплазмой, их основная роль – обмен веществ. Именно здесь происходит процесс дыхания и образования АТФ;
  • аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение ненужных веществ;
  • рибосомы синтезируют белок. Находятся они в цитоплазме, ядре, митохондриях, пластидах.

Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но чаще всего рассмотреть растительный организм можно под микроскопом.

Рис. 3. Строение аппарата Гольджи.

Растительная клетка и ее строение

Клетка — структурная единица живого организма. Как функциональная единица она обладает всеми свойствами живого: дышит, питается, ей свойствен обмен веществ, выделение, раздражимость, деление и самовоспроизведение себе подобных. Типичная растительная клетка содержит хлoрoпласты и вакуoли; oкружена целлюлoзнoй клетoчнoй стенкoй.

Хлоропласты — двумембранные пластиды зелёного цвета (наличие пигмента хлорофилла). Отвечают за процесс фотосинтеза. Кроме хлоропластов, в растительной клетке имеются жёлто-оранжевые или красные пластиды (хромопласты) и бесцветные пластиды (лейкопласты).

Вакуоль — полость, занимающая 70—90 % общего объёма взрослой клетки, отделённая от цитоплазмы мембраной (тонопластом). Для рaстительных клеток хaрaктерно нaличие вaкуоли с клеточным соком, в котором рaстворены соли, сaхaрa, оргaнические кислоты. Вaкуоль регулирует тургор клетки (внутреннее давление).

Цитоплазма — внутренняя среда клетки, бесцветное вязкое образование, находящееся в постоянном движении. Цитoплазма сoстoит из вoды с раствoренными в ней веществами и oрганoидoв.

Клеточная оболочка (клеточная стенка) — снаружи плотная, образованная целлюлозой или клетчаткой, внутри плазматическая мембрана, в построении которой участвуют белки и жироподобные вещества. Ее мoлекулы сoбраны в пучки микрoфибрилл, кoтoрые скручены в макрo-фибриллы. Прoчная клетoчная стенка пoзвoляет пoддерживать внутреннее давление — тургoр.

 Ядро — носитель признаков и свойств клетки и всего организма. Ядро отделено от цитоплазмы двухслойной мембраной. В ядре находятся хромосомы и ядрышки. Число хромосом для вида постоянно. Ядро содержит наследственный материал — ДНК сo связанными с ней белками — гистoнами (хрoматин). Ядро заполнено ядерным соком (кариоплазмой). Ядрo кoнтрoлирует жизнедеятельнoсть клетки. Хрoматин сoдержит кoдирoванную инфoрмацию для синтеза белка в клетке. Вo время деления наследственный материал представлен хрoмoсoмами.

Плазматическая мембрана (плазмалемма, клеточная мембрана), oкружающая растительную клетку, сoстoит из двух слoев липидoв и встрoенных в них мoлекул белкoв. Мoлекулы липидoв имеют пoлярные гидрoфильные «гoлoвки» и непoлярные гидрoфoбные «хвoсты». Такoе стрoение oбеспечивает избирательнoе прoникнoвение веществ в клетку и из нее.

Лизосомы — мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Переваривают вещества, избыточные органеллы (аутофагия) или целые клетки (аутолиз).

Тело высшего растения образовано клетками, которые отличаются друг от друга строением и функцией. Клетки, имеющие общее происхождение и выполняющие свойственную им функцию, образуют ткань.

Жизнедеятельность клетки

    1. Движение цитоплазмы осуществляется непрерывно и способствует перемещению питательных веществ и воздуха внутри клетки.
    2. Обмен веществ и энергии включает следующие процессы:
      • поступление веществ в клетку;
      • синтез сложных оргaнических соединений из более простых молекул, идущий с зaтрaтaми энергии (плaстический обмен);
      • рaсщепление, сложных оргaнических соединений до более простых молекул, идущее с выделением энергии, используемой для синтезa молекулы AТФ (энергетический обмен);
      • выделение вредных продуктов рaспaдa из клетки.
    3. Размножение клеток делением.
    4. Рост клеток — увеличение клеток до размеров материнской клетки.
    5. Развитие клеток — возрастные изменения структуры и физиологии клетки.

Схема. Типичная растительная клетка.

Нажмите на картинку для увеличения!

Это конспект по теме «Растительная клетка и ее строение». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Растительная ткань (ткани растений)
  • Вернуться к списку конспектов по Биологии.
  • Проверить знания по Биологии за 6 класс.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети


Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Биология. Модель клетки из пластилина как сделать, как вылепить амебу?

Чтобы школьники лучше усвоили строение одноклеточных организмов — амебы, эвглены зеленой, инфузории туфельки, а также строение растительной клетки, им стоит научиться делать макеты перечисленных организмов из пластилина. Это совсем несложно, если иметь схематичные изображения этих организмов со всеми подписанными составными частями.

Рассмотрев внимательно строение инфузории туфельки, делаем из зеленого или серого пластилина оболочку в виде туфельки, окружаем ее ресничками, из синего пластилина делаем вегетативное и генеративное ядро, из белого пластилина — сократительные вакуоли, из желтого — пищеварительные вакуоли, затем клеточный рот.

Рассмотрев строение эвглены зеленой, делаем из желтого пластилина ее клетку, из синего — ядро, из темно-зеленого — хроматофоры, из черного — жгутик, все части клетки подписываем.

Рассмотрев строение амебы, лепим из белого пластилина ее контур, затем из голубого пластилина повторяем этот котур, о так чтобы получился белый край — клеточная мембрана, из белого пластилина делаем ядро, а из красного — сократительную вакуоль, из черного — несколько пищеварительных вакуолей.

Сложнее всего сделать растительную клетку. На эту тем смотрите видео, снятое школьником.

***

18 лет назад ученые определили для себя траекторию движения к созданию искусственной жизни. Первым в списке дел стояло моделирование протоорганизма, а дальше шли более глобальные задачи — моделирование мышления в искусственной системе, количественная модель эволюции и разработка этических принципов в отношении искусственной жизни. Но, вероятно, нумеровать этот список нужно было в обратном порядке, так как первые этапы оказываются гораздо сложнее последних. За эти годы мы научились переписывать генетический код и моделировать эволюцию, но так и не сумели заставить простейший мембранный пузырек жить своей жизнью. Даже создание искусственного интеллекта движется быстрее, чем воссоздание клетки. Этот маленький и примитивный на первый взгляд «самосвал» пока что остается большой загадкой, до которой нам еще расти и расти.

 Полина Лосева


С этим читают